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Preface

his study began with an attempt to explain, theoretically, or

experimentally, how the increased rate of convergence was achieved

for two methods of iteration previously developed at the Air Force

Institute of Technology. Analysis of the simpler method applied to

point successive overrelaxation was attempted first. Difficulties in

applying the theory to the method and achieving the reported increase

in convergence rates in actual test runs, were immediately encountered.

The length of time needed to finally resolve these difficulties pro-

eluded analysis of the other method. which was applied to block

successive overrelaxation.

Approximately five hours of computer time on an I1! 7094 com-

puter were used in testing and comparing various scanning techniques

with the method previously developed. The method of point successive

overrelaxation was applied to the five point finite difference approx-

iaations to Laplace's equation and the transient heat transfer

equation.

Two soanning methods, which I have elected to call the standard

scan and the even-odd scan, were programed along with the method

previously developed. It was found that the standard and even-odd

scanv were iteratively faster as the number of required iterations

was increased. Both of these scans are "consistent" and therefore

qualify for the maximum asymptotic rate of convergence amongst the

group of all possible scans. I have attempted in chapter II to ex-

plain explicitly how one determines when a given scan is consistent.

The method is due to Varga and can be easily applied once it is understood.
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Abstract

This study investigates the offect of ordering of finite differ-

once equations on the average rate of convergence of the point sucoess-

ive overrelaxation iterative method. The method is applied to the two

dimensional five point implicit finite difference representation of

Laplace's equation and the diffusion equation of transient heat

transfer.

The average rate of convergence for a specified number of itera-

tions is found to depend on the magnitude of the projection of the

initial error vector onto the dominant eigenvector of the point suc-

cessive overrelaxation iteration matrix. Although the asymptotic rate

of convergence has been proven to be the same, and optimum, for all

consistent orderings, the average rate of convergence for a specific

number of iterations is shown to be different for two consistent

orderings. For a redaction in the initial error vector by three

orders of magnitude, a difference of 20% in average convergence rates

is achieved. An increase in the orders of magnitude reduction pro-

duces a proportionate decrease in the per cent difference between the

two consistent scans.

vii
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I. Introduction

With the growth in speed and complexity af modern high speed

digital computers has come an increase in interest in finding or

approximating the solution to partial differental equations in several

variables by use of these machines. It is naturally desirable to find

a method which will yield a solution to the matrix problems arising

from discrete approximations to partial differential equations in the

mimimum time on the computer. This will allow more and/or larger

problems to be solved with the required accuracy.

From the early work of Young (Ref 7) and Frankel (Ref 4) in 1950,

the method of point successive overrelaxation (to use Young's nomenclature)

has been expanded to cover a wide range of matrix equations through the

concept of p-cyclic matrices treated by Varga (Ref 6). This theory

also applies to the newer method of block successive overrelaxation.

The mathematical theory, although it does provide a good general frame-

work• and basis for d 4 .roction•nir rn srh, iq not auffie!n.tly no.Plato

t •to determine tne optimum method.

* For large problems ths most iuecesfu! teahniý.( to date •I-y

th~a une of an tUal~ict oprociniatior: to the f~~Ail3q~uat.n

Cwie'• t cýrre-?nrsing 41.•fP'! ,nce 'L -,ed

A it." viý euccassive It 'rilons yield anlutions which diff'.%r only by

a small predetermined amount. The discrete values so obtained are

then ++•ken as tii t !+irn of the differenLial 'quation at the

ro.ýp-tive points. Various methods have been developed which use

this general approach.

k1
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Previous work at the Air Force Institute of Technology by Cudahy

(1965) (Ref 2) with point successive overrelaxation and Wright (1967)

(Ref 10) with block successive overrelaxation showed, by an essentially

empirical approach, that the ordering of meE.- noints, or blocks of

mesh points, for solution of the difference e4aations can have a

significant effect on the rate of convergence of the iterative method.

The objective of the present study was to investigate the effect

of ordering, or method of mesh point scanning, on the average and

asymptotic rates of convergence of the point successive overrelaxation

iterative method, and to accomut for the differences in experimentally

observed rates of convergence for different scanning methods.

Method__

The point successive overrelaxation it( ive method was applied

to the five point finite difference approximations to Laplace's equa-

tion and the heat equation. The equations were applied over a square

rgion in two dimensions so that the optimum relaxation factor could

be p, dicted theoretically for Laplace's equation, and so that the pre-

-w4 data 0- e Ocore3tod w~th the pre-icus wcrk of Ctdahy (Ref 2)

Por the heat equation. The ability to predict the optimum r-lik-ation

factior g•atly rLAlces the comput time necess•avr tc obtain the desired

data. For the heat equation solutions were obtained with several

relaxation factors fnr each tV step. Th; optimum relaxnlaton factor

is .iffarent for each time step.

The even-odd scan (denoted odd-even parity by Forsythe and Wasow)

(Ref 3:uo0) and the method developed by Cudahy (Ref 2:34) were compared

2



GSP/PH/68-5

with the standard scan used by Young (Ref 8). The results of those

comparisono are resented in chapter Il. Chapter IV contains a dis-

cussion of the results of this study in terms of the theory presented

in chapter II.

3



GsP/Pil/68-5

Point. Successivo Overrelaxation

To derive the point successive overralaxation iterative method

consider a system of linear equations

a•,j xj a . 1 in9 n

J=1

where the aij are elements of the n x r, complex matrix A. This can

be written in hatrix notation as

A = i(2)

wherei is a given column vector. The solution to this equation ecists

and is unique if and only if the matax A is nonsoinglar (Ref 6:56).

The solution vector can then be written explicitly as

A73)

The diagonal elements ai,i of A are now assumed to be nonzero complem

The matr!. A isn t* vcpcrossed 4s

where D is a strictly diagonal matrix, h is a strictly lower triangular

matrix, and F is a strictly upper triangular matrix. With this

splitting of the matrix A. equation (2) can be written

x F x + k
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Multiplying both Aides of the equation by a quantity W, called the

relaxation factor, gives

(�_D-•�)= F + Wi (6)

Adding the matrix produot D x to both sides and rearranging term gives

E. ,.. - ) +O 1 j 7

This equation suggests the following ite'ative method:

W g)_E) m)= -+W + m-t0 (8)

where the ocmonents of i(o) are the initial estimates of the unique

solution of ; of equation (2). As D -CWE is nonsingular for any

choice of WO , and with the definitions L - D-IE and ULD 1 F, equation

(8) can be written

.€,, Q -OJ _ L_-' DI,. -• Wa + W _U] '
+ W (_1-•_W)- 1 _4-1 k (9)

IThis itorativo method c&•e•d the point sueOfessive ovorrelaxation

iterative method and winl be denoted the S.O.R. iterative method. The

mtr:LT

L G,(-) L)- (1- )I + (A)U 10)

is called the iteration matrix of the S.O.R. iterative method.

Spectral Radius. The magnitude of the largest of the eigenvalues

of the iteration matrix-L (A) is teaued the spectral radius. The

eigenveotor associated with this eigenvalue will be called the dominant

eigenveotor of the iteration matrix. Varga (Ref 6:13) has shown that



GSP/PH/68-5

the S.O.R. iterative method is conve•rmt if and only if the spectral

radius

P(L•w) ,(i

This condition is assured provided (a) that the matrix (D - Wa_) is

nonsingular and its inverse is non-negative, and (b) that the matrix

[(I - )D + W l is non-negative (Ref 6:89).

.ror Vectors. The error vectors •E associated with the S.O.R.

iterative method are defined by

•(m) x(m) -
= x - xm 0 (12)

where ; is the unique vector solution of equation (2). By equation

(9) the error vectors can be expressed as

g(=)~~ ~~ ? (I (0)
- * =. = _L) (13)

Assuming that the elgenvectors of - form a complete set, the initial

error vector E(0) can be expressed in terms of them as

E .inale+ aj;,2 + • + .a• (14)

where the eigenvectors s1, e21  . ., en are aesumed to be normalised.

The 'i, a *, an reprt*dGnt the magnitudes of the components of the

initial error vector. ultiplying equation (14)by iv yialds

(o) z+a(
aikei& 2 ;0 2 +.ann

.(1oh by the eig.nvalue equation e eJai reduces to

20 m j eja X .+ .+ an Ai% (16)

6
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"where it 2  are the eigenvalues of Continuing

in this fashion the error vector at each iteration is given by

(2)

(2). X2;1+-2 X2 Z +... + ,X, ,

2 n

X . +,2X2;2 + • , (17)

Assuming that the eigenvalues are ordered by magnitude such that

Ixi I 2I Ix oI (18

then

For sufficiently lare IXm > . > I and

(n) (Ref 1:115) (20)

E• definition the spectraJ radius p (iL ) i.s enu to the wagnitudo

of the largest eigenvalue Xj of L thus it can be seen that the

error vector will vanish as n--a cuo if and only if p LW) < 1.

For sufficiently large m the magnittke of the error wootor at e.€o

iteration is p]rliarily a fut-tion of the pwct.al rodius anmd the

quantity a, defined by equation (104). Both of these quantities are

determined by the choice of the iteration matrix kLC , which in turn

is determined by the choice of the relaxation factor W and the order

in which the equations (i) are solved. A particular ordering has been

implied in this development by the splitting of matrix A in equation

(4). This ordering is termed the natural or standard ordering.



GSP/PH/68-5

Rate of ConverRence. There is some disagreement in the literature

concerning the defin4ition of rate of convergence. Young, in 1950, de-

fined the rate of convergence as - In p ( •6i ) (Ref 7:94). Varga,

however, has chosen to call this the asymptotic rate of convergence

since it is realized only as m 0-- 0 •p Varga then defines the aver-

age rate of convergence as

R(A) =-in [ (JAj)/m](2:)

for m iterations, where I ["1H denotes the spectral norm of A (Ref 6:62).

If two iteration matrices, A and B, hAve different average rates of con-

vergence for m iterations such that Rj27) <R(g") then matrix A is said

to be iteratively faster for m iterations (Ref 6:62). Varga's definitions

will be used throughout this paper. The average rate of convergence

and the average error reduction rate are equivalent.

Consistent Ordering. Varga (Ref 6:125) has shown that any ordering

of equations (1) which is "consistent" with the natural ordering gives

rise to an iteration matrix I,&) whose spectral radius is equal to that

for L'W given in equation (10) for the sar-e (W . Furthermore, Varga

has shown that this spectral radius is smaller than the spectral radiu-

for any other ordering which is not ccnsisteent with the natu~aJ ordering.

Hence, for sufficiently large i4 the rate of error vector reduction will

bo grelu6st .tr consistent orderings.

Let the n x n point Jacobi matrix B be defined by

B - A + I (22)

where matrix D is defined in equation (4), and matrix A is defined in

equation (2). Then the matrix A is consistently ordered if all the

8
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eigenvalues of the matrix

B(7)=7 7 L+ 7 -(P ) U (23)

derived from the matrix B - L + U, where L and U are respectively

strictly upper and strictly lower triangular matrices, are independent

of 7? , for 7? :0 0, provided that A is a p-cyclic matrix (Ref 6:101).

The matrix A is defined as p-cyclic if the matrix B of (22) is weakly

cyclic of index p (b- 2) (Ref 6:99). The matrix B is weakly cyclic of

index p (Ref 6:39) if there exists an n x n permutation matrix P such

that PBPT is of the form

0 0 . . . 0 bp
b 2 ,1  0 0 0

pBPT 0 b3 ,2  0 0

• S

0 .0 pp-i (24)

The eigenvalues of the point successive overrelaxation iteration

matrix -- cA derived from a consistently ordered p-cyclic matrix A

are related to the eigenvalues of the associated Jacobi matrix B by

( X + W _ i)p= hp-1 W p (25)

where X is a nonzero eigenvalue of L(L). CO is the relaxation factor,

and / is an eigenvalue of B (Ref 6:106). That such a relationship

exists is itself interesting, but its importance lies in the fact that

knowledge of the eigenvalues of the matrix B allows determination of

the eigenvalues of L (A) for a consistent ordering.

Directed Grnh. Fortunately, it is not necessary to apply the

definition directly to determine whether an ordering is consistent.

9
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It can be shown (Ref 6:121) that an

ordering is consistent if it leads

to a matrix B whose directed graph

of type 2 has an equal number of

major and minor paths on every

closed path. A directed graph of

type 2 for the matrix B E (bi,j)

is constructed so that if bi,j # 0

then a path from node Pi to the Fig. I Type 2
Directed Graph

node Pj is drawn and denoted by a

double-arrow (see Fig. 1) only if j > i; otherwise, a aingle-arrowed

path is drawn. The former paths are called major paths; the other

paths are called minor paths. It is also possible to use this graph

to determine when the matrix A is p-cyclio; or equivalently, when the

point Jacobi matrix B is weakly cyclic of index p (Ref 6:100). If the

greatest common divisor of the lengths of closed paths of the graph is

p then tho matrix B is weakly cyclic of index p. where the length of a

path is defined as the number of nodes reached in traversing the path.

Optimum Relaxation Factor. As stated previously the spectral

radius of the iteration matrix L depends on the choice of the relax-

ation factor CJ , as well as the ordering of equattons (1). Ostrowski

has shown thal the S.O.R. iterative method is convergent for all CA)

such that 0 < Wi < 2 (Ref 6:77). The optimum WO , in the sense that

p(L•i)) is minimized, can be related to the largest of the eigen-

values of the matrix B of equation (22), for the special case p = 2, as

Wb =2 (26)

where W b denotes the optimum WO (Ref 6:110).

10
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Thus, for 2-cyclic matrices, the problem of finding the ordering

and relaxation factor which yields the greatest rate of error vector

reduction in the limit as m -- a has been reduced theoretically to

choosing any consistent ordering and finding the largest eigenvalue

of the associated point Jacobi matrix B. The theory still allows for

the possibility, however, that the average rate of convergence may be

different for different consistent orderings, and hence, that the

approach to asymptotic convergence may differ between consistent order-

ings. Also, the projection of the initial error vector onto the

dominant eigenvector of the i+ration matrix, expressed as the quantity

ai in equation (20), may be different for different orderings even if

all are consistent. The extent to which this may be of practical

importance has been examined in this study by applying the point suc-

cessive overrelaxation iterative method to the finite difference

approximations to elliptic and parabolic partial differential equations.

Difference Equations

To derive these difference equations consider the general second

order, linear, partial differential equation

A C?2 U +B Ea2 u +Cau +D )u +E cu +Fu=G

Sx c x C y - (27)

where A, B, .#. , G are constants or function of x and y only. This

equation is classified as elliptio parabolic. or hyperbolic in a

domain of the xy plane as the values of the function B2 - 4 A C are

negative, zero, or positive, respectfully, throughout the domain.

Equations of the hyperbolic type were not considered in this study.

11
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Laplace's ,Euation. Laplace's equation is an example of the

elliptic type, and this equation was chosen for study bacause the

ei&envalues of the iteration matrix of the associated difference

equations can be found theoretically. This allows precise determina-

tion of the optimum overrelaxation factor prior to actual solution of

the difference equations.

To derive a finite difference approximation to Laplaoe's equation

C)2 u (x~y) + CY u (x,y) = 0
) X2 C y2 (28)

subdivide the x-y plane into sets of equal rectangles of sides

x8 = h, 8 y = k, as shown in Fig. 2, and let the coordinates (xy)

of a representative mesh point p be

x = ih, y = jk (29)

where i and j are integers (Ref 3:7).

Y 0j+ 1

kp(ih,jk)i-lj Nj i,÷ ,j

T i,- 1
k

01 h'- - 9 -' 1 ih -

Fig. 2 Sample Mesh

12
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Denote the value of u at p by

1 u( Jk)= uij (30)

icpand the function u(x~y) in the x direction about the point x in a

Taylor's expansion as

a(xp hyp) U(Xpyp) ÷h u + h2  ISx xp YPC- x2 •y
+x Ih3I

6 ±!. 3  ,L +p (31)

Addition of the expansions for u(xp + h.yp) and U(Xp - h~yP) gives

u(xp + h,yp) + u(xp - h.yp) = 2u(xpyp) + h2 @2 u

+ O(h4 ) (32)

where 0(h 4 ) ienotes terms containing four=,h and higher powers of h.

Assuming that these terms are negligible compared with the lower

powers of h, it follows that

C- 2 u= u(xp + hyp) - 2u(xp,yp) + u(xp - h,yP)

c) xp1yp h2  (33)

In terms of the notation introduced in equation (29) this can be

expressed as

a 2 U u[(i + 1)h,jk] 2u~ih~jI + u[(i - 1)h,jk]x p h2 (34•)

or
2 = ui+1. -2ui,.4 + ui.1+ j

cx 2  ij h2 (35)

13
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The derivatign for ) 2 u is similar and gives

•2 ul uiJ+I - 2•LA.j + Ui,ij_
72 i,j k2 (36)

Both equations (35) and (36) are approximations to the derivatives,

and are called finite difference approximations. The magnitude of

the error introduced by these equations is reduced as the mesh &ijp

is decreased.

Substituting the expressions for the derivatives, equations (35)

and (36), gives the following approximation to equation (28), Laplace's

equation,

ui+,,j - 2uij + ui_,j + ui,J+i - 2 uij + ui,jI = 0

h2  k2  (37)

Assuming for simplicity of analysis that the mesh spacings are

taken equal in the x and y directions, that is, that h = k, equation

(37) reduces to

4u,,j - (uj+j,j + Uji 4 ,j + uj,j4j + uj..I) = 0 (38)

for each mesh point. This expression is called a five-point formula

since each mesh point (xi,yj) is coupled to at most four other adja-

cent mesh points. This system of linear equations can be written

A u (39)

where the column vector c contains the values of the function u

specified on the boundaries of a rectangular region in the xy plane.

14
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The derivation leading to equation (39) shows that A is a real

snmetric matrix with positive diagonal entries and non-pobitive off-

diagonal entries. Moreover, it can be shown that A is irreducibly

diagonally dominant, so that A is positive definite (Ref 6:187).

This implies that K-> R, where 0 is the ntll matrix (Ref 6:85).

The associated point Jacobi matrix B, defined by equation (22),

caii be shown to be a non-negative, irreducible cyclic matrix of index

2 with real eigenvalues, and with p (B) < (Ref 6:188).

Since all of the diagonal entries of the matrix A are 4, the

point Jacobi matrix B associated with A can be expressed simply as

B=I -A (40)

All the elgenvalues and eigenvectors of the matrix B can be obtained

explicitly for the finite difference approximation to Laplace's

equation in a rectangle. Since B is non-negative and irreducible,

it has a unique positive eigenvector with eigenvalue p (B). which

for a unit square is given by

= cos (hIT) (Ref 6:203) (41)

For the point successive overrelaxation iterative method the

optimum W can thus be written, by equation (26), as

2 2
• C~~A)b

p 2 i + sin (hiT) (42)

for all consistent orderings.

Heat Euation. The derivation of the five point finite differ-

ance approximation to the diffusion equation of transient heat transfer

15
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is similar to that for Laplace's equation. The mesh spacings and

notation defined in equation (30) and illustrated in Fig. 2 are again

adopted.

In two dimensions the heat equation for an isotropic, homo-

geneous mate•LWa. can be written as

where

U(xy,t) is the temperature,

CL is the thermal diffusivity, and

/ depends on the rate of heat generation, the density of

the material, and the heat capacity.

It can be seen that the steady state heat equation with no heat gener-

ation reduces to Laplace's equation, while the transient heat equation

is parabolic.

With the assumption of niform mesh spacing, equal to h, the

second partials of U with respect to x and y at time t + A t can be

replaced with finite differences similar to equations (35) and (36)

while the first partial of U with respect to t can be found from the

Taylor's expansion

U(xp,ypt) = U(xpyp,t + 6 t) - At DU
EDt xpiYpt +A t

+ 6(LAt) 2 cE2 U
S xpYPt / + At (4)

Assuming that higher powers of An t can be neglected, this becomes

16



I " At U(xp.rp.t + A U(xp.yp.t)

StI Xypet + AtAt (45)

Using these finite difference equations at time t + A t, equation (43)

can be expressed as

U(i.j.t+ At) - U(w.it) = -, U(i+u..it÷At) + U(i-1,j.t÷/t
At h2

+ C, u(i..14.t+At) + u(i.J-1.t+ At)

4 a u(i.j~t+6 t) +,

h2  (46)

Introducing the notation r a i O/ At/h2 this equation becomes

(I + 4r) U(iJ,t+ At) = r [U(i•t.Jt+At) + U(i-ij,t+At)

+ U(i,3J+,t+'At) + U(ij-At+÷At)J
+ U(iJt) + /3 At (47)

or

U(iJt+ At) = r [U(i*I.aJt+6t) + U(i-iJ.t+A÷t)
144r

+ U(iJilit+A t) + u(iJ-I.t+At)]

+I [u~i.i~t) +, At] (8
144r (4,8)

This system of line u* equati!ons can be written

AU= (49)

where 1 includes the given boundary and initial conditions as well as

the heat generation rate. Again, as for Laplace's equation, A is

irreducibly diagonally dominant, positive definite, and thus A7 > 0.

17
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The associated point Jacobi matrix B is a non-negative, irreducible

cyolic matrix of index 2 with real eigenvalues, and with p (B) < 1.

The eigenvalues of the matrix B, however, cannot be determined

explicitly for this equation. Thus the spectral radius p (B) must

be estimated, or the optimum OW determined experimentally, for a

given problem.

OrderinE

The standard method of ordering of the difference equations,

such as equation (38), for solution by an iterative method can be

illustrated for a small sample mesh, as shown in Fig. 3. The node

(i = 1, J = 1) is assigned the first position in the ordering, the

node (1,2) the second, and

(1,3) the third. The

"scan" is then continued t
h

in a similar manner for 3 8 9

the row i = 2 giving node

(2,1) the fourth position 4 5 6

in the ordering, node (2,2) 2 3

the fifth and so on

ihroughout the mesh. If 2 3 4

each node within the mesh

is assigned a number as Fig. 3 Mesh Numbering

shown in Fig. 3, the standard ordering may be expressed as 1I,2,3,

i,5,6,7,8,9] , where the first position within the brackets design-

ates which point is to be solved first, the second position designates

which is to be solved second and. so on.

18
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With this notation a different ordering, called the even-odd

scan. can be ecpressed [2,4.6,8,1.3.5.7,9] Again. the numbners

within the brackets denote the points ae labled in Fig. 3, while the

positions within the brackets denote the order in which the points

are taken for solution, with the first position first, the second,

second, and so on. When the point occupying the last position is

solved for, the iteration is complete. The ordering is also oalled

the "scan".

The definition of a consistent ordering can now be illustrated

for the two scans defined above. Take, for example, the finite diff-

erence appreacimation to Laplace's equation in a square. The mesh

and point numberings shown in Fig. 3 will be used. Equation (38) can

be vritten in matrix notation as

A u k (50)

where the column vector k contains the values of the function u

specified on the boundaries of the nosh. The matrix A is given by

1 4 0 4 0 0 0 0 0

1 0 4 0 0 0 0

0 - 1 0 0 4 0 0 0

4 0 0 1 4 0 4 0 0

A 0 4 0 41 4 0 4 0 (01)

0 0 0 1 0 0 4

0 0 0 4 0 0 1 0- 0

0 0 0 0 4f 0 I -*

0 0 0 0 0 -" 0 4 1

19
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The associated Jacobi matrix B is defined by

S= I- D71 A (52)

and is given by

0 1 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 1 0 0

B=t 0 1 0 1 0 1 0 1 0

0 0 1 0 1 0 0 0 1

0 0 0 1 0 0 0 t 0

0 0 0 0 1 0 1 0 1

0 0 0 0 0 1 0 1 0 (53)

To determine whether an ordering is consistent, the matrix B is

transformed by the permutation matrix P oorresponding to the ordering,

by a similarity transformation of the form PB__I = PBT (Ref 3:244).

The permutation matrix P corresponding to the standard ordering

[12*3p4o5#6v798.9J is simply P = I and hence the transformation

yields the matrix B. Now, the ordering is consistent if the directed
T

graph of type 2 of the matrix PEP has an equal number of major and

minor paths. The directed graph of type 2 for matrix B of equation

(53) is shown in Fig. 4.

Many useful properties can be deduced from this graph. The graph

is "strongly connected", that is, there is a path (with arrows) from

each point to every other point. Hence the matrix B (and therefore A)
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Fig. 4 Directed Graph of Type 2
for the Standard Scan

is irreducible (Ref 6:40). Ths greatest common divisor of closed paths

is 2, hence the matrix B is weakly cyclic of index 2 (Ref 6:101). By

definition, then, the matrix A is 2-cyclic (Ref 6:99). The number of

major (2-arrowed) and minor (1-arrowed) paths on every closed path is

equal; therefore, the matrix B is consistently ordered. Since the same

conclusions hold for PBPT, the standard scan is consistent.

The permutation matrix P for the even-odd scan [2.4,6,8,1,3.5,7.9]

is given by

010000000
000100000
000001000
000000010

= 1 0 0 0 0 0 0 0 0 (54)
001C000000
000010000
000000100
000000001

The directed graph of type 2 for PBPT, where B is given by equation

(53), is shown in Fig. 5. The number of major and minor paths on each
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Fig. 5 Directed Graph of Type 2
for the Even-Odd Scan

closed path is equal, and therefore the even-odd scan is consistent.

22
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SP//- I. Epermenta_ Investigation and Results

In this investigation the standard scan and the even-odd scan

were programmed in Fortran IV for execution on an I3I 7094 computer.

The scans were applied to the five point finite difference approxima-

tions to Laplace's equation and the heat equation in a square with a

I uniform mesh spacing in both directions. The method of point

successive overrelaxation was used.

These two scans were compared to each other and to a method devel-

oped and tested by Cudahy in 1965 (Ref 2). Cudahy applied his method,

which was designed to accelerate the convergence of the standard point

successive overrelaxation iterative method, to the five point finite

difference approximation to the diffusion equation of transient heat

transfer, using point successive overrelaxation, he compared his method

to the standard scan and found that his method was iteratively faster,

the per cent difference depending on various factors, including the

time step and heat generation rate. Ke did not program the even-odd

scan.

One of the first objectives of the present study was to explain,

from an examination of the theory of point successive overrelaxation,

why Cudahy's method was faster than the standard scan. This proved

to be somewhat difficult, how.ver, since the theory that has been

developed for point successive overrelaxation deals with cyclic,

stationary iterations, while Cudahy's method strictly speaking is

neither cyclic nor statioiiary.

An iterative procedure is said to be cyclic when the ordering is

repeated, without change, on each iteration. The method developed by
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Cudahy employs four different orderings (each of which, considered by

itself, is consistent). These four scans are applied repetitively, in

the same order, until the process convergr. to a predetermined limit.

The four orderings can be illustrated in terms of the mesh points

labeled in Fig. 3. The firit ordering is [1,20397#8p9,4,5961 ; the

second ordering is [3.2.1.9.8,7.6,5t4] ; the third ordering is

[1,4.7,3,6,9.2,5,8] ; the fourth ordering is [7,4,1,9,6,3,85,2]

The center row or column is always solved last.

An iterative process is termed stationary if the relaxation

factor applied is independent of the iteration number. In his method,

Cudahy applied two different relaxation factors on each iteration.

Although the two relaxation factors are the same on each subsequent

iteration, the use of four different orderings makes the relaxation

factor applied to certain points of the mesh a function of the

iteration number, and hence the method is non-stationary.

One of the difficulties that this presents can be seen by

examining the assumptions used in the error vector analysis leading to

equation (20) of chapter II. It was assumed there that the same itera-

tion matrix 11W of equation (10) was applied on each iteration, that

is, that the method was cyclic and stationary. For Cudahy's method

there are four different iteration matrices, which do not have the same

set of eigenvectors, and thus equation (20) does not apply.

Another difficulty introduced by the use of four iteration

matrices is encountered in predicting the asymptotic rate of conver-

gence. Thu rate is affected by a coupling between the iteration

matrices which cannot be exactly known without knowledge of the full

range of eigenvalues and eigenvectors of each :aatrix. Determination
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of the eigenvaluer id eigenveators of the iteration matrices, which

is a formidable p. oum in itself, is complicated by the• fact that

explicit representation of i e iteration matrices requires, for a 51

by 51 mesh, the direct inversion of a 2401 by Z401 matrix for each

iteration matrix. This type of problem is avoided in the theory of

point successive overrelaxation by equation (25),which specifies the

eigenvalues of the S.O.R. iteration matrix in terms of the eigenvalues

of the associated Jacobi matrix B, which can be explicitly represented

from equation (22).

Since the theory provides no Immediate answer for these problems,

the computer was used to compare Cudahy's method experimentally with

the standard and even-odd scans.

Laplace' s Eauation

The finite difference approximation to Laplace's equation, for a

uniform mesh spacing, given by equation (38), can be solved by the

method of point successi'.e overrelaxation derived in chapter II. The

point equation corresponding to A. matrix equation (9) is given by

u(i,j) = (1 - C)u(i,j) + (A [uui + 1,J) + u(i - iJ)

+ u(i,j + I) + u(i,j - i)] (55)

where the (m + O)'s and W's have been suppressed to allow this

equation to represent any ordering. The values of the fun -on u

within the brackets are to be taken from the present or preceding

iteration, depending on the ordering of points for solution.

Equation (55) is applied at each point within the mesh to form a

complete iteration. The magnitude of the change in the valua of u at
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each point is ' ted as the iteration progresses. and the largest

change is retained. At the end of each iteration this value can be

compared to a predetermined number, called the iteration limit. If

the largest of the changes in magnitude of the function u, denoted 7

is less than the iteration limit the process may be said to have con-

verged to that iteration limit. This is an easily applied convergence

criteria.

In this study the difference magnitude 7 was not teoted at the

and of each iteration to determine convergence, but rather a specified

number of iterations were performed with the value of 7 printed out

for each iteration. If an iteration limit is later specified then the

first iteration where 7 is less than the specified limit will be the

iteration at which the process can be said to have converged.

The standard and even-odd scans where compared to Cudaby's method

for a 31 by 31 mesh where the value u = 1000 was specified on the

boundaries, and the initial estimate for all points within the mesh

was u - 0. The results of that omparison are shown in Table I for

various iteration limits. It was stated previously that Cudahy's

method employs two relaxation factors, The second relaxation factor

is applied only to the points in the last row or column of the iteration

and is given in terms of the CO listed in Table I by

, (t + 4r) (Ref 2:25)
Wr + 1 + 4r (56)

where r = CL A t which gives for Laplace's equation (At - 00)

h2

4 +W
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Table I

Number of Iterations Required for Various Iteration
Limits for a 31 x 31 Mesh Solving Laplace's Equation

Iterations

Iteration Standard Even-Odd Cudaby's Method
Limit Scan Scan .....

(A) = 1.81 (A)= 1.81 W-1.880 =1.85 W=,1.90 (W=1.95

t102 lb 16 j 5 9 24

101 36 28 31 27 31 67

100 61 40 65 55 64 94

to-! 62 5' 99 82 75 137

10-2 71 64 133 110 94 191

"10-3 85 76 167 138 128 232

10-4 96 88 202 166 144 288
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It can be seen from Table I that Cudahy's method is initially itera-

tively faster than either of the other two scans. As the iteration

limit becomes finer, however, Cudahy's method becomes iteratively

slower. Thus it is likely that the asymptotic rate of convergence of

Cudahy's method is less than that for a conuistent, cyclic stationary

iteration. This assertion cannot be proven experimentally, of course,

since the asymptotic rate of convergence is realized only as the

number of iterations approaches infinity.

Sirnce the standard scan and the even-odd scan are consistent, the

optimum overrelaxation factor can be determined precisely from equation

(42). The optimum CW was used to obtain the data shown in Table I for

these scans. It is interesting to note that the even-odd scan is iter-

atively faster than the stanuard scan for all iteration limits shown.

Since both scans have the same asymptotic rate of convergence, the even-

odd scan can be expected to be iteratively faster than the standard scan

for all iteration limits, no matter how fine.

Figs. 6 and 7 show a segment of the data from which Table I was

constructed, for the standard and Gven-odd scans. The difference

magnitude Y , defined as

y (m+1)(m)I
a-ex Jui,j -~ 1i,j , i, j- (58)

where N is the number of mesh spacings, is plotted versus the iteration

number. For a sufficiently larSe number of iterations the even-odd scan

is iteratively faster than the standard scan by an amount which is repre-

sented by a fixed number of iterations at a convergence rate approx-

imately equal to the asymptotic rate of convergence. Since the

difference between the scans is a fixed number of iterations, the per
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for a 31 x 31 mesh solving Laplace'3 equation
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cent difference is a function of the number of iterations and will

approach zero as the number of iterations approaches infinity.

Fig. 8 shows a comparison between the even-odd scan at optimum

(O and Cudahy's method at (A) = 1.85. It can be seen that Cudahy's

method rapidly approaches its asymptotic rate of convergence, which

is not as great as that for the even-odd scan. The somewhat erratic

behavior of the difference magnitude X for the first few iterations

illustrates the difficulty in making theoretical predictions of aver-

age rates of convergence for a relatively small number of iterations.

To determine whether the mesh size has an important effect on the

relative speed between the s9andard and even-odd scans, the mesh size

was varied from a 10 by 10 to a 70 by 70. Computer time limitations

precluded inclusion of larger mesh sizes. The results of that compar-

ison are shown in Table 2. Again the optimum (A) was calculated from

equation (42) and used in these runs. The iteration limit used repre-

sents a reduction in the length of the error vector by a factor of

approximately 10"11, or eleven orders of magnitude.

The data in Table 2 show that the number of iterations difference

between the two scans increases as the mesh spacing decreases, and that

the per cent difference, for the same iteration limit, remains approx-

imately the same. This indicates that the relative speed difference

is independent of mesh spacing.

Figs. 9 and 10 show the difference magnitude 7 as a function of

the iteration number for a 40 by 40 mesh. It can be seen that the

same general features are present here as were present for the 31 by 31

mesh in Figs. 6 and 7. The only significant change is the difference

in asymptotic rate of convergence, the slope of the curve for large

iteration numbers.
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Table 2

Number of Iterations Required at an Iteration
Limit of 10-' for Solution of Laplace's Equation

with Various Mesh Sizes for a Unit Square

Iterations
Mesh Number Per Cent
Size Standard Even-Odd Difference Difference

Scan Scan

10 x 40 48 45 3 6.3%

20 x 20 98 93 5 5.1%

30 x 30 148 139 9 6.1%

40 x 40 195 186 9 4.6%

50 x 50 244 231 13 5.3%

60 x 60 293 277 16 5.4%

70 x 70 343 323 20 5.8%
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Fig. 10 Difference magnitude. / versus iteration wmba
for a 40 x 40 mesh solving Laplac~e's equation
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The point equation, for the finite difference approximation to

the heat equation, corresponding to the matrix equation (9), is given

/by
U(i. ,jt+A6t) -(I- O) U(i,J, t+ At) +Ca Wu(i+1i, .t+ At)

+ u(i..4,j,t+ Lt) + U(i'j+1't+ At) + U(i~j-i't+ At)]
+ 1 [ue4'.a t) +/ At] N

144r j (59)

where the (m + 1)'s and (m)'s have been suppressed to allow this

equation to represent any ordering.

So3utions of equation (59) by point s'.• AIve overrelaxation were

obtained using the standard and even-odd scans and Cudahy's method.

The problem selected was similar to that for Laplace'& equation. The

boundary values were set at U = 1000, the thermal diffusivity (X was

taken as 0. = 1, and there was no heat generation ( 3 = 0). This

corresponds to the problem for which Cudahy rejorted the greatest

improvement in rat, )f convergence for his imethod compared to the

stAnxdard scan. The initial values inside the mesh were U = 0 for each

mesh point. A uniformly spaced 51 by 51 mesh was employed.

Tables 3, 4, and 5 show the number of iterations required for

various iteration limits foi. At = 0.01, 0.1, and 0.5 respectively.

These results correspond closely with those given by Cudahy (Ref 2)

for '-is method and the standard scan up to an iteration limit of 10-

The present data have been .o. +ended to much finer iteration limits,

howe-er, ir, order -o indicate the asymptotic behavior of the methods.

The even-odd scan, which was roune o be iteratively faster than the
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Table 3

Number of Iterations Required for Various Iteration Limits for
a 51 x 51 Mesh Sol7ing the Heat Equation witch /A t = 0.01

Iterations

Iteration Standard Even-Odd Cudahy's
Limit Scan Scan Method

0 = 1.25 W = 1.25 W = 1.35

102 3 3 3

101 6 5 4

10 9 7 6

10-1 12 8 8

10-2 15 10 10

10- 3  18 11 12

10-4 21 13 14

10-5 25 15 16

10-6 28 16 18

10-7 31 18 21

10- 8  35 20 23

10- 9  38 21 25

10"10 41 23 28

10"11 44 25 31

10-12 48 26 33
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Table 4

t~unber of Iterations Required for Various Iteration Limits for
a 51 x 51 Mesh Solving the Heat Equation with A~ t = 0.1

Iterations

Iteration Standard Ever-Odd Cudahy's Method
Limit Scan S. ni

W 0=1.64 W~ -- 64 (0=1.68 C=1.70 (:=1.-72

102 9 7 4~ 4 4

10 1 18 12 7 7 7

to0 28 17 12 11 11

t0o 38 22 18 17 16

48 27 25 23 20

10-3 58 32 32 29 2 7

to ~ 68 37 39 35 32

10-5 78 42 47 42 41

1o-6  89 47 55 50 53

tooo10 53 64 6o 66

10-8 102 59 73 70 79

io-9 1.05 63 81 82 95

109 68 90 96 108

10 12 73 99 108 115

to-12 116 78 ill 115 123
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Table 5

Number of Iterations Required for Various Iteration Limits for
a 51 x 51 Mesh Solving the Heat Equation with A t = 0.5

Iterations

Iteration Standard Even-Odd Cudahy's
Limit Scan Scan Method

Qj = 1.79 (A = 1.79 W = 1.85

1O2 16 .12 5

101 34 22 11

100 52 31 23

10-1 69 43 41

10-2 90 55 61

lO-3 101 67 90

jo- 104 79 108

10-5 112 91 117

10-6 123 103 131

10-7 135 115 144

10-8 148 127 160

l0- 9  160 140 178
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standard scan for laplace's equation, is seen here to be iteratively

faster for the heat equation as well.

Again, as was the case for Laplace's equation, Cudahy's method

is initially iteratively faster than either of the two consistent,

cyclic, stationary scans, The introduction of the factor A t in the

heat equation has the effect of expanding the number of iterations,

in relation to a fixed convergence criteria, for which Oudahy's method

is faster than the standard scan. Comparing the plots for the standard

scan in Figs. 7 and 10 with the data presented in Table ., it can be

seen that the sharp drop in the difference magnitude 7, which for

Laplace's equation occured at an iteration limit of approximately 100

occurs for a A•t = 0.1 at an iteration limit of approximately iO-7.

Cudah;y's method is faster than the standard scan so long as comparisons

are confined to this region, and not extended to finer iteration limits.

The even-odd scan, )n the other hand, is not adversely affected by the

transition to a mall /A t.
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IV. Discussion and Conclusions

Consistent Scans

As shown by the tables and figures in chapter III, the even-odd

scan was found to be iteratively faster than the standard scan for

all problems tested. This effect can be explained in terms of the

theory presented in chapter II by a consideration of the expansion of

the error vector at the (m)th iteration in terms of the eigenvalues

and eigenvectors of the iteration matrix.

For a sufficiently large numoer of iterations the error vector

following the (m)th iteration is given by equation (20) as

=l I el (20)

This corAition can be found to be satisfied experimentally when the

ratio of the difference magnitude Y for the (m)th iteration to the

difference magnitude Y for the (m - 1)tz %eration is approximately

equal to the spectral radius and when this value is essentially con-

stant for several preceding and several following iterations. For the

problems tested this condition was found to apply for all iterations

past the 100th iteration. Expressed another way, X ' was found to
100

be much less than 1 100

In examining the terms in equation (20) it will be recalled that

the dominant eigenvector eI was assumed to be normalized. The largest

eigsnvalue X is the same, and minimum, for all consistent orderings.

This leaves only the quantity a,, which is the magnitude of the pro-

jection of the initial errox vector E(0) onto the dominant eigenvector,

to -ccount for the observed behavior.
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From an examination of equation (20) one would predict that if

the quantity a, were in fact different for two consistent orderings

then the error vector after a sufficient number of iterations would be

greater or less for the one scan as compared to the other by a fraction

equal to the ratio of the two aI's. Furthermore, one could predict

that the magnitude of the error vector for the iteratively slower scan

after m + m' iterations would be equal to that for the faster scan

after m iterations, and that m' would be independent of m. Referring

to Fig. 10, this is exactly the behavior observed, from which it is

concluded that the quantity a1 , corresponding to the even-odd scan

is less than the aI corresponding to the standard scan. This observa-

tion holds for all the problems tested.

That the a1 's could be different for different consistent scans

is not surprising since, although all of the eigenvalues are the same,

the eigenvectors are known to be, in general, different for different

scans (Ref 9:403), and hence the projection of the initial error vector

onto the dominant eigenvector will in general be different.

The data indicate that the even-odd scan is preferable, in gener-

al, over the standard scan for point successive overrelaxation. The

time savings achieved will vary with the size of the problem and/or

the iteration limit required, and will be reduced asymptotically to

zero as the number of iterations increases toward infinity. The max-

imum savings observed for few iterations was on the order of 15 to

20%. This value is not unreasonable for the savings to be expected

for a small problem (40 x 40 m6'h) with a required error vector

reduction of three or four orders of magnitude.
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2Hdahjy' Method

One of the initial objectives of this study was to explain why

Cudahy's method was faster than the standard scan and then to apply

it, or a variation of the principal with block overrelaxation, to

three dimensions. Unfortunately, it was discovered that Cudahy's

method was not in fact asymptotically faster and hence the expansion

to three dimensions was not attempted.

From the data presented in chapter III, Cudahy's method can be

seen to be best suited for the transient heat equation at small Ak t.

The iterative speed of his method can be seen from Tables 3, 4, and 5

to be quite favorable when compared to the standard scan and less so

when compared to the even-odd scan. The data in Table 4, for Akt =

0.1, include the results for Cudahy's method with three different

relaxation factors. It can be seen for an iteration limit of 10-O

that the highest relaxation factor gives the greatest iterative speed.

For finer convergence criteria, however, the (A) corresponding to the

best speed decreases; and hence, the iterative speed is a function of

the iteration limit as well as the relaxation factor.

The method developed by Cudahy was designed to accelerate the

convergence of point successive overrelaxation by scanning the bound-

ary values into the mesh as quickly &a possible. Each of the four

scans employed takes the values from one of the sides of the mesh and

distributes them throughout the entire mesh. It can be seen from Fig.

8 that this produces an initial rapid convergence, as seems reason-

able, but that the method is eventually iteratively slower than the

consistent scans, due to its slower asymptotic rate of convergence.
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Block Overrelaxation

Although this present work was confined to point successive

overrelaxation, it is known that the method of block successive over--

relaxation is asymptotically faster by approximately 40 per cent

(Ref 6:205).

Much of the theory presented in chapter II for point successive

overrelaxation is also applicable to block overrelaxation. In par-

ticular the definition 6f and techniques for finding consistent

orderings are identical. It is only necessary to partition the matrix

A of equation (1) in the form

£-41.2.

A A A

z-2.1 -2,2
A=

A A . A (60)I n,2"" -- n

where the diagonal submatrices A, I d i d N, are square and non-

singular. The associated matrix B is then the block Jacobi matrix B

defined by•B -D" A + 1.

As a practical matter, the diagonal submatrices of A of equation

(60) must be tridiagonal so that they may be solved directly.

The relevance of the present work to block successive overrelax-

ation is that it indicates that it may be possible to find a or-Ristent

ordering which is iteratively faster than the standard method of line

overrelaxation. The theory does not specifically exclude this possibil-

ity; however, the requirement that the submatrices be tridiagonal may

make the search difficult.
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ec ommendations

Since the asymptotic rate of convergence for point and block

successive overrelaxation has been shown by Varga to be optimum for

consistent orderings (Ref 6:125), and since this study has indicated

that the iterative speed difference between two consistent orderings

can be significant for small problems, the author feels that further

research into accelerating the rate of convergence could be profitably

directed toward finding that consistent ordering which yields the

greatest initial average rate of convergence.

Ektension of the method to three dimensions and testing of

various consisten'. scans in that domain should prove worth-while.

Other iterative methods, such as the alternating-direction

implicit methods and semi-iterative methods, have been developed which

appear to be faster than point successive overrelaxation, and in some

cases, block successive overrelaxation. In particular, Varga has

reported that for the model problem (Laplace's equation in a rectangle)

the alternating-direction implicit methods have produced convergence

rates as much as 38 times as great as for point successive overrelax-

ation (Ref 6:228). Varga shows that these methods derive their speed

primarily from the use of different accelerating parameters on each

iteration (Ref 6:217). A significant disadvantage of these methods

however, in addition to their complexity, is the fact that they are

not rigorously applicable to irregular geometries.

An attempt 4as made during the present study to increase the rate

of convergence for the even-odd scan by the use of non-stationary

iterations by assigning a slightly larger than optimum relaxation

factor to the even points of the scan and a slightly smaller t1lr-
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optimum factor for the odd points and by decreasing the difference

for subsequent iterations, but the method proved to be initially

divergent and was not investigated further. It may be possible to

develop a more sophisticated method which would succeed.

Use of the techniques employed by Cudahy, combined with the use

of different relaxation factors on each iteration might lead to

greater rates of convergence, but this procedure is most likely to

succeed as a variation of the alternating-direction implicit methods.

Since Cudahy's method has the ability to quicly eliminate large

gradients in the approximation to Laplace's equation, it might favor-

ably be combined in an iterative procedure with the even-odd scan,

wherein Cudahy's method is applied initially to smooth out large

gradients, and then the even-odd scan, with its greater asymptotic

rate of convergence, is used to obtain the desired accuracy through-

out the mesh.
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